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We study spontaneous dynamics and signal transduction in a model of active hair bundle mechanics of
sensory hair cells. The hair bundle motion is subjected to internal noise resulted from thermal fluctuations and
stochastic dynamics of mechanoelectrical transduction ion channels. Similar to other studies we found that in
the presence of noise the coherence of stochastic oscillations is maximal at a point on the bifurcation diagram
away from the Andronov-Hopf bifurcation and is close to the point of maximum sensitivity of the system to
weak periodic mechanical perturbations. Despite decoherent effect of noise the stochastic hair bundle oscilla-
tions can be synchronized by external periodic force of few pN amplitude in a finite range of control param-
eters. We then study effects of receptor potential oscillations on mechanics of the hair bundle and show that the
hair bundle oscillations can be synchronized by oscillating receptor voltage. Moreover, using a linear model for
the receptor potential we show that bidirectional coupling of the hair bundle and the receptor potential results
in significant enhancement of the coherence of spontaneous oscillations and of the sensitivity to the external
mechanical perturbations.
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I. INTRODUCTION

Spontaneous rhythmic activity was observed in peripheral
auditory and vestibular sensory systems comprised of sen-
sory cells coupled to primary afferent neurons through
chemical synapses. Examples include spontaneous mechani-
cal oscillations of hair bundles in auditory hair cells �1–7�;
spontaneous voltage oscillations of receptor potential of sac-
cular hair cells �8–10�; pacemakerlike firing of vestibular
afferent neurons �11�. Spontaneous receptor oscillations were
also documented in peripheral electrosesnory systems
�12–14�.

Sensory hair cell is the first stage in conveying the me-
chanical stimuli into the electrical signals. Using the me-
chanically gated ion channels on stereocilia, a hair cell con-
verts deflection of its hair bundle into the changes in the
membrane potential. Spontaneous stochastic oscillations
with amplitudes much larger than expected for mere thermal
fluctuations and whose response to weak stimuli breaks the
fluctuation-dissipation theorem indicate an active process in
which the hair bundle generates motion by itself, battling
viscous drag from surrounding fluids �7�. Active hair bundle
motion contributes to the amplification of weak mechanical
signals, sharpens frequency response and is responsible for
the phenomenon of otoacoustic emission �15–17�. Experi-
mental and modeling studies have shown that spontaneous
hair bundle oscillations are mediated by two main processes
that need to be present together to provide self-sustained os-
cillations �i� negative differential stiffness, providing a posi-
tive feedback and leading to mechanical instability and �ii�
adaptation processes due to calcium-controlled molecular

motors, providing negative feedback �7,18–23�. Several
studies suggested that the hair bundle operates on a verge of
an Andronov-Hopf bifurcation, providing extreme sensitivity
and sharp selectivity to external mechanical perturbations
�19,24–26�.

Less understood is a functional role of spontaneous volt-
age oscillations documented in experiments with the saccular
hair cells of lower vertebrates �8–10�. These oscillations are
mediated by basolateral potassium and calcium ion channels
and observed as a large �10–70 mV� amplitude oscillations
of the receptor potential. Indeed, variations in membrane po-
tential may strongly influence the mechanics of hair bundles
via a reverse electromechanical transduction �20,27–29�. The
authors of Refs. �8–10� hypothesized that the receptor poten-
tial oscillations may contribute to the active amplification
and sharpening of frequency response in hair cells. A recep-
tor voltage resonator coupled to active bundle motion was
recently proposed as a possible mechanism of self-tuning
�22�.

In this paper, we focus on the role of hair bundle oscilla-
tions and on effects of receptor potential oscillations in shap-
ing the system’s response to external mechanical stimuli us-
ing a computational model. Several computational models
were developed to account for spontaneous hair bundle os-
cillations. Models developed in �19,21–23,30� describe a hair
bundle as a single object whose elasticity is mediated by
adaptation processes and by transduction ion channels. De-
tailed finite element model of hair bundle mechanics �31,32�
was used to examine the possibility of high-frequency oscil-
lations in mammalian outer hair cells in Ref. �33�. Here we
use a model developed in Ref. �21�. A simplified version of
this model was used in Refs. �23,30�. We modified the model
in two ways: �i� we added periodic oscillations of the mem-
brane potential to study the electromechanical sensitivity of*neimana@ohio.edu
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the hair bundle motion to externally modulated receptor po-
tential; �ii� we introduced a linear resonator model for the
receptor potential coupled to the hair bundle to study effects
of reverse electromechanical transduction on the coherence
of spontaneous oscillations and on the sensitivity of hair
bundles to weak mechanical stimuli. In addition to the sen-
sitivity measure used in the previous studies we employ non-
linear synchronization analysis to quantify phase locking and
frequency entrainment of the stochastic hair bundle motion
by weak external periodic force and by receptor potential
oscillations.

The paper is organized as follows. Section II introduces
the hair bundle model and discusses its deterministic dynam-
ics. Spontaneous stochastic oscillations and response to pe-
riodic mechanical force are studied in Sec. III. In Sec. IV we
introduce periodic perturbation of receptor potential and re-
analyze spontaneous dynamics and responses to mechanical
stimuli.

II. HAIR BUNDLE MODEL AND DETERMINISTIC
DYNAMICS

A model of spontaneous hair bundle oscillations was pro-
posed in �21� based on detailed in vitro experiments with
bullfrog sacculus. These cells are sensitive to linear motion
of the head. Below we briefly describe the model using the
same notation as in �21�. In the model a hair bundle is rep-
resented as an elastic object comprised from stereocilia
which move as a whole in a viscous fluid. The variable x�t�
represents the position of the tip of the bundle. The hair
bundle is subjected to a drag force, �ẋ; elastic forces from
extension or compression of gating springs connecting indi-
vidual stereocilia with the gates of mechanoelectrical trans-
duction �MET� channels, FGS; an elastic force arising from
the stereocilia pivots FSP; and an external force, Fext. The
nonlinearity in the model stems from the forces exerted by
the gating springs, FGS. The hair bundle is composed of NGS
transduction elements each with a spring attached to the gate
of single MET ion channel. The gating springs lie in parallel
with one another, and characterized by the stiffness �GS. The
combined elastic force from the gating springs is FGS
=NGS�GS�l, where � relates the shearing motion between
stereocilia to the motion of the hair bundle tip, and l is the
extension of individual gating spring. The extension l of the
gating spring is influenced by opening of the MET channel
and by adaptation processes which move insertional plaque
of the MET channel up and down along stereocilia. Opening
of the MET channel shortens the gating spring by an amount
d, while the adaptation results in shortening by an amount xA.
As a result the total extension of the gating spring is l=�x
−xA− pod+xC, where po is the probability of the MET chan-
nel to be opened and xC is the resting extension of the spring
when the MET channel is closed. A two-state kinetic model
is used to describe the gating of the MET channels, �ṗo
= p�− po, where �=1 msec and p� is the equilibrium value
of po, which depends nonlinearly on x and xA �see below�.
The adaptation involves two competing processes: the gating
spring pulling downward and the molecular motors pulling
upward on the insertional plaque of the MET channels. Both

processes are influenced by the concentration of calcium
ions, �Ca2+�. The rate of adaptation pulling downward in-
creases with �Ca2+�, while the rate of adaptation due to pull
from the molecular motors decreases with �Ca2+�. In the
model both rates are assumed to interpolate linearly between
0 and maximum values Cmax, Smax in proportion to the prob-
ability of calcium binding at the adaptation site, pM. The
stiffness of the gating spring is affected by fast reclosure of
transduction channel due to calcium entrance. In the model
gating springs are comprised of two elements in series: a tip
link with the stiffness �TL and a reclosure element with the
stiffness �RE, giving the overall stiffness, �GS
=�TL�RE / ��TL+�RE�. While the stiffness of the tip link, �TL
is constant, the stiffness of the reclosure element, �RE,
changes linearly between a maximal and minimal values in
proportion to the probability of Ca2+ binding at the reclosure
element, pRE: �RE= �1− pRE���RE,max−�RE,min�+�RE,min. The
model’s equations are,

�
dx

dt
= − NGS��GS��x − xA + xC − pod� − KSP�x − xSP�

− �LKSFx + Fext, �1�

dxA

dt
= − �1 − pM�Cmax + pMSmax��GS��x − xA + xC − pod�

− �ESxA� , �2�

�
dpo

dt
= p� − po, �3�

dpM

dt
= kON,M�Ca2+�M�1 − pM� − kOFF,MpM, �4�

dpRE

dt
= kON,RE�Ca2+�RE�1 − pRE� − kOFF,REpRE, �5�

�GS =
�TL�RE

�TL + �RE
,

�RE = �1 − pRE���RE,max − �RE,min� + �RE,min. �6�

Equation �1� describes the position of the bundle tip. The last
two terms, −�LKSF x and Fext stand for an external mechani-
cal load, characterized by the stiffness KSF, and the external
force, respectively; �L is a dimensionless control parameter
characterizing the strength of the external load. Equation �2�
governs the adaptation variable xA. Equation �3� is the kinetic
equation for the open probability of transduction channel
with the equilibrium value,

p� =
1

1 + Ae−��x−xA�/� ,

A = exp��E − �GSd�xC − d/2�/�kBT��, � = kBT/��GSd� , �7�

where �E is the change in the free energy of the MET chan-
nel when it switches from open to close states in the absence
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of the gating spring and T is the temperature. Equations �4�
and �5� describe the probabilities of Ca2+ binding to the ad-
aptation site �4� and to the reclosure element �5�. �Ca2+�M,RE
are Ca2+ concentrations at these sites. Ca2+ enters through the
MET channel and its concentrations at the adaptation site,
�Ca2+�M, and at the reclosure element, �Ca2+�RE are deter-
mined with the Goldman-Hodgkin-Katz equation �34� result-
ing in,

�Ca2+�M,RE = −
	

rM,RE
po�Ca2+�O

2qeVmPCa

2
DCakBT�1 − e2qeVm/�kBT��
,

�8�

where �Ca2+�O=0.25 mM is extracellular Ca2+ concentra-
tion, rM,RE are the distances from the channel to adaptation
motors and to reclosure element, respectively; Vm is the
membrane potential of the hair cell; qe is the elementary
charge; PCa is Ca2+ permeability of the MET channel and
DCa is the diffusion coefficient of Ca2+ in water. In Eq. �8� 	
is a dimensionless control parameter, related to calcium sen-
sitivity parameter used in a model proposed in Ref. �23�.
Notice that according to Eq. �8� �Ca2+� at the adaptation and
reclosure sites depends on the receptor potential Vm. Dimen-
sionless parameters 	 and �L were used as a control param-
eters of the model. The values of other parameters were fixed
and are listed in Table I of Ref. �21�.

Local bifurcations of the model Eqs. �1�–�8� were studied
using a software package CONTENT �35�. For the parameters
values used in this study the model exhibits two types of
steady-state solutions: equilibrium points and limit cycles.

Bifurcation diagram of the equilibrium points on the param-
eter plane �	 ,�L� in Fig. 1�a� shows a line of the supercriti-
cal Andronov-Hopf �AH� bifurcations. For a fixed value of
external load parameter �L, there are two supercritical AH
bifurcations as external �Ca2+� varies. For small 	�0.58
�low �Ca2+�O� the MET channels are mostly opened and the
hair bundle is in the equilibrium position. For large 	 the
MET channels are mostly closed and the system is again at
equilibrium. At the first AH bifurcation point of small 	0 a
small limit cycle is born �Figs. 1�b� and 1�c��. In a very
narrow parameter 	 range its amplitude increases as �	
−	0�1/2 and its frequency is nearly constant. Small increase
in 	 results in sudden jump of the amplitude to much higher
values �Fig. 2�a��, corresponding to a large excursion of the
phase trajectory �Figs. 1�b� and 1�c��. Such a transition is
often observed in slow-fast systems which possess drasti-
cally different characteristic time scales and refers to the ex-
istence of so-called canard trajectory which explodes to a
large amplitude limit cycle in a narrow range of the control
parameter �36�. The canard explosion dramatically slows
down oscillations. Figure 2�b� shows that the frequency of
small-amplitude oscillations drops abruptly three times at the
canard explosion points. Further increase in 	 results in os-
cillations with gradually increasing frequency, but with de-
creasing amplitude until the limit cycle bifurcates to the
equilibrium state via second AH bifurcation. The external
mechanical load results in a shrinking of the oscillating re-
gion and in overall increase in the frequency of oscillations.
The canard explosion disappears for �L�0.7. For large �L,
the passive stiffness overwhelms the negative stiffness result-

FIG. 1. �Color online� �a� Bifurcation diagram of the model. Solid line shows the Andronov-Hopf bifurcation. Shaded area corresponds
to the existence of periodic solution �limit cycle�. �b� Hair bundle position versus time before �gray line�, near �dotted blue line�, and after
�black line� canard explosion. �c� Phase portrait corresponding to the time traces of panel �b�. �d� Magnified region of the phase space
showing small-amplitude cycles. The values of control parameter 	 are indicated in the figure legend, �L=0 on panels �b�–�d�.
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ing in disappearance of the limit cycle oscillations. Thus, the
frequency and the amplitude of oscillations depends drasti-
cally on the control parameters in the vicinity of the first AH
bifurcation.

III. SPONTANEOUS HAIR BUNDLE OSCILLATIONS AND
RESPONSE TO PERIODIC FORCE

The deterministic model Eqs. �1�–�8� was extended to
take inevitable fluctuations into consideration. Here we con-
sider two sources of internal noise. The first source results
from the Brownian motion of viscous fluid surrounding hair
bundles. This leads to additional term �t� in the right-hand
side of Eq. �1�,

�
dx

dt
= − NGS��GS��x − xA + xC − pod� − KSP�x − xSP�

− �LKSFx + Fext + �t� , �9�

modeled as Gaussian white noise with the autocorrelation
function ��t��0��=2kBT���t�. The second noise source
stems from stochastic dynamics of transduction channels,
which can be approximated as �37�

�
dpo

dt
= p� − po + ��t� , �10�

where ��t� is a Gaussian white noise with the autocorrelation
function ���t���0��= 2

NGS
�p��1− p����t�. Note that this second

type of noise is state dependent, as its intensity depends on
the phase variables of the model through p�. All other
sources of fluctuations such as fluctuating forces acting on
motors considered in �23� are neglected. The model Eqs.
�1�–�8� with the modification mentioned above were simu-
lated using the Euler method with the time step of
10−3 msec.

A. Spontaneous oscillations

We first show that the stochastic version of the model
reproduces experimental results of Ref. �21�. In experiments
the influence of Ca2+ was studied using iontophoresis. Cor-
respondingly we varied the parameter 	 in a steplike or ram-
plike manner as shown in Fig. 3: when the external �Ca2+�

increases, the oscillations go faster and are of smaller ampli-
tude �Fig. 3�a��. Decreasing the external �Ca2+� leads to an
opposite effect �Fig. 3�b��. Relative low or high external
�Ca2+� prohibits oscillations. These results are consistent
with experimental observations �Fig. 6 of Ref. �21��. Noise
has significant effect on the hair bundle dynamics. For ex-
ample, for low �Ca2+� below the value of the first AH bifur-
cation internal noise induces oscillations �Fig. 3�b��. With the
increase in external load �parameter �L� the frequency of
oscillations increases and their amplitude decreases �Fig.
3�c�� �compare with Fig. 8 of Ref. �21��.

The power spectral density �PSD� of the hair bundle po-
sition is shown in Fig. 4�a�. For 	�0.58, i.e., for the param-
eter value prior to the first AH bifurcation, the hair bundle
shows low-frequency erratic relaxation oscillations induced
by internal noise �Fig. 3�b��. Thermal noise smears out any
signature of small-amplitude limit cycle observed in this pa-
rameter region in the deterministic system. Consequently, the
PSD has a broad peak at low frequency. With the increase in
	 the natural frequency of hair bundle oscillations increases
and oscillations become more coherent, as indicated by the
narrower peaks in Fig. 4�a�. However, with further increase
in 	 the hight of the spectral peak decreases and its width
increases, indicating the approach to the second AH bifurca-
tion. We characterized the coherence of spontaneous oscilla-
tions with the quality factor defined as the ratio of peak fre-
quency, f0, to the width of the spectral peak at the level of
half maximal power. The parameter dependencies of the

FIG. 2. Amplitude �a� and frequency �b� of the limit cycle as a function of the control parameter 	 for the indicated value of �L. 	0 is
the value of control parameter 	 at which the first Andronov-Hopf bifurcation occurs for a given �L.

FIG. 3. Effect of the external Ca2+ concentration 	 �a� and �b�
and the external load �L �c� on spontaneous hair bundle oscillations.
�a� 	 was ramped linearly from 0.8 to 1.5 in 1200 msec. �b� Steplike
reduce of 	 from 0.8 to 0.55 for 1200 msec. �c� Steplike increase in
�L form 0 to 1.0 for fixed 	=0.8.
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quality factor, Q, and the characteristic frequency, f0 are
shown in Figs. 4�b� and 4�c�. The quality factor attains a
maximum value at 	�0.7, which is located in between of
two AH bifurcations and corresponds to the average open
probability �po��0.5. Increasing the external load leads to
faster and less coherent oscillations. This is consistent with
the results of Refs. �23,38,39�.

B. Signal amplification and synchronization

The response of the model to a periodic external force,
Fext=F0 cos�2
fst�, was quantified with two approaches. In
the first approach we estimated the response function of the
system. Time-dependent average �x�t�� of periodically stimu-
lated hair bundle was calculated by averaging over an en-
semble of 100 realizations of x�t� each 100 sec long. The
sensitivity function was calculated as �M= �X�fs�� /F0, where
�X�fs�� is the absolute value of the first Fourier harmonic of
�x�t�� �23�. The sensitivity shows a peak at the characteristic
frequency of the hair bundle oscillations and demonstrates
the effect of compressive nonlinearity: the sensitivity satu-
rates for small amplitudes of external force, decreases ac-
cording to a power law for intermediate amplitudes and satu-
rates again for large values of F0 �23�. This is illustrated in

Fig. 5�a� for different values of 	. The characteristic fre-
quency and the quality factor of spontaneous oscillations de-
pend crucially on 	 �Figs. 4�b� and 4�c��. As a result, the
sensitivity to weak external force possesses a global maxi-
mum on the parameter plane �fs ,	� shown in Fig. 5�b�.

The mechanical sensitivity does not provide information
about the phase locking and frequency entrainment. Thus, in
our second approach we calculated the instantaneous phase
of the hair bundle position, ��t�, and the phase lag between
the hair bundle position and the external force, ���t�=��t�
−2
fst using the Hilbert transform �40�. Phase locking cor-
responds to a constant value of ���t�. However, due to noise
the phase difference fluctuates, ���t�, and can be repre-
sented as a Brownian motion in a tilted periodic potential
�41�. The tilt of such a potential is determined by the mis-
match between the frequencies of the hair bundle oscillator
and the external force. In the presence of noise synchroniza-
tion is never perfect. Instead, long-lasting small-scale fluc-
tuations of ���t� around the potential minima are interrupted
by large-scale transitions over the potential barriers. This sto-
chastic synchronization is illustrated in Fig. 6�a� where phase
locking epochs of nearly constant phase difference lasting for
many periods of external force are interrupted by abrupt 2

phase slips. The strength of phase locking is characterized by
the synchronization index, �2= �cos�����2+ �sin�����2,

FIG. 4. �Color online� Spectral properties of spontaneous hair bundle oscillations. PSD of hair bundle motion for �L=0.5 and for the
indicated values of parameter 	 �a�. The quality factor �b� and the characteristic frequency �c� of spontaneous hair bundle oscillations versus
	 for the indicated values of the parameter �L.
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where the averaging is taken over time �40�. The synchroni-
zation index changes from 0 �absence of synchronization� to
1 �perfect synchronization� and is shown in Fig. 6�b�. Syn-
chronization becomes significant for strong enough external
force, F0�1 pN, so that the mean frequency of the hair
bundle, fb= ��̇� /2
, is entrained by the external periodic
force in a finite region of parameter values. This is illustrated
in Fig. 6�c�, where the frequency difference, �f = fb− fs, is
shown as a function of fs. The synchronization region where
�f is close to 0 extends for up to 8 Hz for F0=2 pN. Nev-

ertheless, the synchronization index is smaller than 1 in this
region �Fig. 6�b��, indicating the existence of phase fluctua-
tions. Since the characteristic frequency of the hair bundle
oscillator is governed by the parameter 	 we present a region
of frequency entrainment on the parameter plane �fs ,	� for
two values of the signal amplitude �Fig. 6�d��. The synchro-
nization region is narrower for small values of 	, where the
system is closer to the first AH bifurcation. In this region
large-amplitude relaxation oscillations appeared through the
canard explosion are strongly affected by thermal noise re-

FIG. 5. �Color online� �a� The mechanical sensitivity of the hair bundle �M versus the amplitude of external force F0 for the indicated
values of the parameter 	 and �L=0.5. The frequency of external force, fs, was tuned to the characteristic frequency of spontaneous
oscillation �fs= f0�, also indicated in the figure legend. �b� Contour plot of the mechanical sensitivity for various values of 	 and fs. Other
parameters are: F0=0.1 pN and �L=0.5.

FIG. 6. �Color online� Phase synchronization of the hair bundle oscillations by the external periodic force. �a� Instantaneous phase
difference, ���t�=��t�−2
fst, for the indicated values of the driving frequency, fs. Other parameters are F0=1 pN, 	=0.7, and �L=0.5. �b�
Synchronization index versus the driving frequency. Other parameters are the same as in panel �a�. �c� The frequency difference, �f = fb

− fs versus the driving frequency for the indicated values of the driving amplitude, F0. Other parameters are the same as in panel �a�. �d�
Regions of synchronization within which ��f ��0.05 Hz on the parameter plane �fs ,	� for F0=1 pN �red, solid line� and F0=2 pN �blue,
dotted line�.
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sulting in low phase coherence. With the increase in 	 to-
ward the second AH bifurcation the amplitude of oscillations
decreases �Figs. 2�a� and 3�, so that the external force merely
suppresses intrinsic hair bundle oscillations leading to a
wider range of frequency entrainment.

IV. INFLUENCE OF RECEPTOR VOLTAGE
OSCILLATIONS

The characteristic frequency and the coherence of sponta-
neous hair bundle oscillations depend crucially on Ca2+ con-
centration at the adaptation sites which is controlled by the
parameter 	 in the model. Ca2+ entry through the MET chan-
nels indeed depends on the electrical potential of the cell, Vm,
as expressed by the Goldman-Hodgkin-Katz Eq. �8�. Depo-
larization of the cell decreases �Ca2+� at the adaptation sites,
while hyperpolarization leads to an increase in �Ca2+�, which
in turn affect the rates of adaptation �Eqs. �2� and �4�–�6��.
Thus, variations in the receptor potential may strongly affect
the hair bundle motion through the phenomenon of reverse
electromechanical transduction �3�. Bullfrog saccular hair
cells are known to exhibit the phenomenon of electrical reso-
nance whereby the receptor potential shows dumped oscilla-
tions being knocked by a pulse of injected current �42�.
Moreover, spontaneous self-sustained oscillations of the re-
ceptor potential were observed experimentally in �8–10�. To
explore the effects of receptor potential oscillations on
mechanoelectrical transduction we used two approaches. In
the first approach we modulated the receptor voltage periodi-
cally and characterized reverse electromechanical transduc-
tion. In the second approach we used a linear model for
underdamped electrical oscillations coupled to the hair
bundle model and characterized effect of such coupling on
the mechanical sensitivity of the hair bundle.

A. Sensitivity to external receptor potential modulation and
electromechanical synchronization

The receptor potential Vm in Eq. �8� was modulated peri-

odically as Vm�t�= Ṽm+V0 cos�2
fvt�, where Ṽm=−55 mV
is the constant component of the potential used in the previ-
ous sections of the paper, V0 is the modulation amplitude,
and fv is the frequency of modulation. We calculated the

electromechanical sensitivity as �v= �X�fv�� /V0, where �X�fv��
is the absolute value of the first Fourier harmonic of �x�t��.
Similarly to mechanical sensitivity, the electromechanical
sensitivity is nearly constant for a weak modulation �V0
�5 mV� and decreases with further increase in V0 �Fig.
7�a��. However, for larger values of V0 in the physiological
range V0�80 mV �10� no saturation of the electromechani-
cal sensitivity was observed. The electromechanical sensitiv-
ity displays the resonance with respect to variations in the
voltage frequency: �v is maximal at fv matching the fre-
quency of the spontaneous hair bundle oscillations f0. Simi-
larly to the mechanoelectrical sensitivity �Fig. 5�b�� the sen-
sitivity to weak external voltage oscillations possesses a
global maximum on the parameter plane �fV ,	� shown in
Fig. 7�b�. These results indicate a rather strong sensitivity
and selectivity of the hair bundle to external voltage varia-
tions with 1–2 nm per mV.

For V0�10 mV the external voltage oscillations lock the
hair bundle oscillations. This electromechanical synchroniza-
tion is shown in Fig. 8. The mean frequency of the hair
bundle oscillations is entrained by the voltage modulation in
a finite range of fv �Fig. 8�a��. We note that the modulation
amplitudes of 20–35 mV resulting in a wide synchronization
region �Fig. 8�b�� correspond well to 40–75 mV values of
peak-to-peak amplitudes of the receptor potential oscillations
measured in �10�.

B. Linear resonator model for the receptor potential
oscillations

Oscillatory and resonant properties of the receptor poten-
tial are mediated by K+ and Ca2+ ion channels in the baso-
lateral membrane of a hair cell �8,42–45�. Several Hodgkin-
Huxley-type models were developed to account for electrical
resonance �42� and self-sustained oscillations of the mem-
brane potential �8,9�. Instead, here we use a simplified de-
scription of the receptor potential as a linear resonator devel-
oped in �46�. The equation for the membrane potential reads,

CmV̈m + �0V̇m + k0�Vm − V0� + I0�v = 0, �11�

where Cm is the capacitance of the cell membrane, �0 and k0
are effective damping and “stiffness,” respectively which are

FIG. 7. �Color online� Sensitivity of the hair bundle to the periodic modulation of the receptor potential. �a� The electromechanical
sensitivity �v versus the amplitude of voltage modulation, V0, for the indicated values of 	 and fv. �b� Contour plot of the electromechanical
sensitivity �v for various values of 	 and fv. Other parameters are: V0=5 mV and �L=0.5.
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related to parameters of basolateral ionic currents, �v is the
natural frequency, �v

2 =k0 /Cm. I0 is a constant current which
may represent either external command current or a current
from support cells �47�. Since the MET channels are not ion
specific, the MET current in effect is similar to the leakage
current. The leakage conductance enters in both the damping,
�0, and stiffness, k0, coefficients of Eq. �11� �46�. The MET
current is given by It=gtpoVm, where gt is the maximal com-
bined conductance of transduction channels �i.e., when all
MET channels are opened�, po is the open probability of the
MET channels �48�. Upon introduction of the MET current,
the coefficients �0 and k0 are modified as: �=�0+gtpo and
k=k0+�vgtpo. Introducing the quality factor of the resonator
in the absence of the MET current, Qv=�vCm /�0, we arrive
to the following equation for Vm:

V̈m + �v�Qv
−1 + �po�V̇m + �v

2�1 + �po��Vm − V0� + I0�vCm
−1

= 0, �12�

where � is a dimensionless coefficient defined as �
=gt�Cm�v�−1. We required that the receptor potential oscil-
lates about an equilibrium value close to −55 mV used in the

preceding sections by setting V0 as V0= Ṽm− I0��1
+0.5���vCm�−1, where Ṽm=−55 mV. Notice, that the in-
crease in the MET conductance �increase in po� raises the
damping in the linear resonator model �12� and thus lowers
its quality factor. In the following we use Cm=14 pF for the
cell membrane capacitance �8� and I0=10 pA. The maximal
conductance of the MET channels of bullfrog sacculus
ranges from 0.08 to 2.48 nS �48�. The quality factor of the
electrical resonator, Qv, its natural frequency, �v=2
fv, and
the maximal MET conductance, gt are then the parameters of
the linear electrical resonator model. Combining Eq. �12�
with the hair bundle model Eqs. �1�–�10� results in bidirec-
tional mechanoelectrical and electromechanical coupling.
The maximal MET conductance, gt, plays the role of the
coupling strength. For gt=0, the receptor potential is at its

equilibrium value, Ṽm=−55 mV. A representative example
of the time courses of the hair bundle position and the recep-
tor potential is shown in Fig. 9. The voltage resonator tuned
to the characteristic frequency of the hair bundle oscillations
filters out noise, leading to a sharper peak in the power spec-

trum of the hair bundle motion �Fig. 10�a��. The dependence
of the hair bundle Q values on the coupling strength is non-
monotonous �Fig. 10�b��. For small values of gt the ampli-
tude of the voltage oscillations is small and the effect of
electromechanical coupling is small as well. Consequently,
the coherence of the mechanical oscillations is close to the
case of the fixed receptor potential. On the other hand, the
increase in gt results in decrease in the quality factor of linear
resonator. As a result, there is an optimal coupling strength at
which the coherence of the hair bundle oscillations is maxi-
mal. Sharpening of the peak in the power spectrum of spon-
taneous oscillations results in a sharper response to the ex-
ternal periodic force. Figure 11 shows calculations of the
mechanical sensitivity, �M to the external force, Fext
=F0 cos�2
fst�. With the electrical resonator coupled to the
hair bundle the response to the external mechanical force
becomes significantly sharper �Fig. 11�a��: with the receptor
potential fixed the quality factor of the mechanical sensitivity
tuning curve is �3.2 and increases to 6.1 for the coupled
system with QV=10. Similarly to the quality factor �Fig.
10�b��, the mechanical sensitivity possesses a maximum ver-
sus the MET conductance, shown in Fig. 11�b�.

V. CONCLUSION

We have studied spontaneous oscillations and response
dynamics of ciliary bundles of sensory hair cell using nu-
merical simulations. The original model used in this study
was proposed in Ref. �21� to account for spontaneous hair
bundle oscillations observed in in vitro experiments with iso-

FIG. 8. �Color online� Phase synchronization of the hair bundle oscillations by the external voltage modulation. �a� The frequency
difference, �f = fb− fv, versus the modulation frequency, fv, for the indicated values of the modulation amplitude, V0. �b� Region of
synchronization within which ��f ��0.05 Hz on the parameter plane �fv ,V0�. Other parameters are the same as in Fig. 7.

FIG. 9. The hair bundle position x�t� �upper trace�, and the
receptor potential VM�t� �lower trace� for the combined model Eqs.
�1�–�8� and Eq. �12�. The parameters are 	=0.7, �L=0.5, Qv=30,
fv=10.5 Hz, and gt=0.12 nS.
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lated bullfrog saccular hair cells. The model incorporates dif-
ferential negative stiffness of the hair bundle and two adap-
tation mechanisms �due to adaptation molecular motors and
due to fast reclosure of transduction channels� to account for
self-sustained oscillations. Adaptation rates are controlled by
the concentration of Ca2+ ions at the adaptation sites. We first
performed bifurcation analysis of the model using external
�Ca2+� as the control parameter. For the parameters values
used in Ref. �21� we found that the system possesses single
stable equilibria for both low and high �Ca2+�. Transitions to
periodic self-sustained oscillations occur through the super-
critical Andronov–Hopf bifurcations �Fig. 1�. Interestingly,
transition to the self-sustained oscillations from low �Ca2+� is
accompanied by a canard explosion. Before the canard ex-
plosion, but after the Andronov-Hopf bifurcation, a small-
amplitude limit cycle exists in exponentially narrow range of
the control parameter. Small increase in the parameter results
in explosion of this limit cycle resulting in low-frequency
large-amplitude relaxation oscillations whose frequency de-
pends crucially on the control parameter. Indeed, thermal
noise completely washes out these small-amplitude oscilla-
tions, so that they can be hardly detected in the time traces or
in the power spectrum of the hair bundle motion.

Spontaneous dynamics of stochastic model resembles ex-
perimental data and is very similar to modeling results of

�23�. Consistent with Ref. �23� we found that the coherence
of spontaneous oscillations quantified by the quality factor is
maximal for a value of the control parameter at which the
open probability of transduction ion channels is close to 0.5.
This parameter value is away from both Andronov-Hopf bi-
furcations.

We then explored response of the stochastic hair bundle
model to the periodic external force. Besides the mechanical
sensitivity function, which characterizes the amplification of
external signal and tuning of the system used in previous
studies, we employed a synchronization analysis to charac-
terize instantaneous phase locking and frequency entrain-
ment. We showed that despite large fluctuations induced by
thermal noise the spontaneous hair bundle oscillations can be
phase synchronized by periodic external force with ampli-
tude as small as 1 pN, corresponding to �10 nm amplitude
of mechanical stimulation displacement. This is consistent
with the experimental results �Fig. 1 in Ref. �6�.�.

Tuning of a hair cell can be provided by resonant proper-
ties of basolateral membrane which comprises various K+

and Ca2+ ion channels, responsible for the phenomenon of
electrical resonance �42� and for a large �10–70 mV� ampli-
tude spontaneous oscillations of receptor potential �8–10�.
The receptor potential is a crucial parameter in the model,
since its variations affect Ca2+ entrance through the transduc-

FIG. 10. �Color online� �a� PSD of the hair bundle position for the indicated values of the MET conductance, gt. Other parameters are
the same as in Fig. 9. �b� Quality factor of the hair bundle oscillations versus the MET conductance for the indicated Q values of the
electrical resonator. Other parameters are the same as in Fig. 9.

FIG. 11. �Color online� Mechanical sensitivity, �M, of the hair bundle coupled to the electrical resonator. �a� �M versus the frequency
detuning, fs− f0, for the indicated values of Qv. The natural frequency of the electrical resonator was equal to the frequency of the
spontaneous hair bundle oscillations, fv= f0=10.5 Hz. The MET conductance gt is 0.3 nS for Qv=10 �circles, solid line� and 0.2 nS for
Qv=30 �triangles, dashed line�. The amplitude of the external force F0=0.1 pN. �b� �M versus the MET conductance for fv= fs=10.5 Hz
and the indicated values of Qv. Other parameters are the same as in Figs. 9 and 10.
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tion channels and consequently the adaptation dynamics.
Thus a model for hair cell can be constructed from two com-
partments: �i� a mechanical compartment of the hair bundle
and �ii� an electrical compartment describing dynamics of
the receptor potential. These compartments are coupled bidi-
rectionally �27�. The mechanoelectrical coupling is realized
through the mechanoelectrical transduction current which
tends to depolarize the hair cell. The electromechanical cou-
pling is due to the influence of the receptor potential on
intracellular Ca2+ concentration which in turn controls the
hair bundle dynamics. In this paper we simplified the con-
sideration by assuming that variations in the receptor poten-
tial affect Ca2+ concentration locally, i.e., at the locations of
adaptation motors and reclosure elements. First, we explored
the reverse electromechanical transduction by changing the
receptor potential periodically. We found that the external
periodic modulation of the receptor potential entrains the
hair bundle oscillations for the ranges of the modulation
strength consistent with the values of amplitudes of sponta-
neous voltage oscillations documented in Ref. �10�. Second,
we used a simple linear model to describe resonant proper-
ties of basolateral membrane. Similar approach was used in
�22� to explain a possible mechanism of self-tuning whereby
the hair bundle always operates on the verge of the
Andronov-Hopf bifurcation. In that study the voltage com-
partment was used to mediate a background Ca2+ concentra-
tion in stereocilia via Ca2+ current through the basolateral ion
channels. Our scenario is different in that the receptor poten-
tial affect Ca2+ current through the mechanoelectrical trans-
duction channels. With the quality factor of the electrical
resonator higher than that of the hair bundle compartment we
showed that bidirectional coupling enhances the coherence

of spontaneous hair bundle oscillations, as compared to the
case with a fixed receptor potential. Consequently, the
mechanoelectrical sensitivity is enhanced by the electrical
resonator and displays a sharper tuning �Fig. 11�.

Recently the authors of Ref. �49� showed that mechanical
coupling of the hair bundles synchronizes their spontaneous
motion leading to dramatic enhancement of the coherence of
spontaneous oscillations and of the mechanical sensitivity to
weak external forces. The mechanism proposed here may
contribute to further suppression of noise-induced fluctua-
tions and thus to additional enhancement of hair cells sensi-
tivity and selectivity. Indeed, the linear resonator model for
receptor potential is a severe simplification. In particular, it
does not allow to consider self-sustained voltage oscillations
which are characterized by large amplitudes and high coher-
ence. Consequently one can expect mutual synchronization
of the hair bundle and voltage oscillations. A detailed
Hodgkin-Huxley-type model for the receptor potential �8,10�
along with a model for Ca2+ homeostasis in stereocilia �50�
can be employed to account for the interaction of the active
hair bundle motion and the self-sustained receptor oscilla-
tions.
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